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Adsorption of Dipolar Hard Spheres onto a Smooth, 
Hard Wall in the Presence of an Electric Field 
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Integral equations have been solved for the density profile of dipolar 
hard spheres against a hard, smooth wall in the presence of an electric field. 
This density profile was examined as a function of the bulk medium's 
temperature and density with different field strengths and field directions. 
It was found to depend primarily upon the competitive interactions of the 
field with the monolayer particles and the first outer shell with the mono- 
layer particles. 
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1. I N T R O D U C T I O N  

Some of the most provocative problems in theoretical physics arise from 
the study of inhomogeneous systems. Unfortunately, as often as not, these 
are also some of the more difficult problems to solve analytically. For  some 
time, integral equations have been used to study homogeneous fluids (con- 
stant density) with a fair degree of  success. In fact, with certain closure 
conditions it has been possible to solve these integral equations (generally, 
the Ornste in-Zernike--OZ--equat ion)  for a number of  simple (but non- 
trivial) pair potentials. (1) Study of the solution of these equations has stimu- 
lated a large amount  of  thought into the nature of  the local structure in 
liquids, and these solutions often agree qualitatively with direct machine 
simulations. (1) 

One of the inhomogeneous problems of great interest in liquid state 
physics concerns the behavior of  a fluid against a wall. A simple description 
of  the thermodynamic behavior of  hard spheres in contact with a wall was 
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developed by Reiss et al. (2~ These workers originally interpreted a wall as 
the result of the growth of a particular isolated particle, with the thermo- 
dynamic behavior being given by the associated limits of the equations 
arising out of scaled particle theory. Recently"several publications (a-6~ have 
given the microscopic properties of inhomogeneous systems by taking 
judicious limits of the solution to the OZ equation for mixtures with hard 
cores. Perram and Smith (3~ specifically studied these limits in mixtures of 
"sticky" spheres. They were able to produce density profiles against the 
wall whose qualitative structure has since been confirmed by simulation 
results for other, more realistic model potentials. (v'8~ 

Isbister (9~ has solved the two-component dipolar hard-sphere problem 
in the mean spherical approximation. It turns out that in addition to taking 
the density and radius limit of one component to produce the wall, it is 
also possible to produce an electric field if the polarity of that same com- 
ponent is held constant. In the next section we will present the appropriate 
details of the two-component dipolar hard-sphere problem, the mechanics 
of the hard-wall limit, and the mechanics of the polarization limit. In Sec- 
tion 3, we shall first graphically present density profiles against the wall for 
various dipole orientation and electric field angles. We shall then discuss in 
detail the competitive interactions which determine the monolayer (contact) 
density profile for this model. Finally, we shall make some brief comments 
on future extensions of this model. 

2. DENSITY  PROFILES: A STATIST ICAL M E C H A N I C A L  
A P P R O A C H  

Physical adsorption density profiles near a smooth, hard wall can be 
treated within the framework of liquid state models appropriate to a statis- 
tical mechanical approach. The foundations of such an approach were 
given by the pioneering work of Perram and Smith. (~ Their physical argu- 
ments for the use of certain limiting processes have been further strengthened 
by the recent results of Percus (4~ (using functional analysis techniques). The 
basic concept in the Perram-Smith approach is the interpretation of the 
number density of a-species (of diameter R~) particles at a distance r from 
a particle of different species ~ (of diameter R~) fixed at the origin p~(r). It 
is well known from mixture theories in statistical mechanics that the quan- 
tity p~(r) is equivalent to the total correlation function h~(r )  describing the 
radial dependence of the a-/~ species-species correlations. Specifically, p~(r) 
is given in terms of h~(r)  and the bulk density of species a, p~, by 

p~(r) = p~[h~(r) + 1] (2.1) 

If an isolated particle of species/3 is allowed to increase its size indefi- 
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nitely, the quantity p,(r) will then describe the local density of  particles of 
species a at a distance r - Re/2 away from a wall. In other words, the 
density profiles of each species a from a wall are described by the limiting 
behavior of  h~e(r) as Pe tends to zero and R e to infinity (in that order): 

p~(r) = lim ~'lim p~[h~B(r ) + 1]) (2.2) 
2 B ~ o~.p~ ~ 0 

Applications of Eq. (2.2) to physisorption have used spherically symmetric 
interaction potentials in modeling the mixture whose limiting behavior, as 
described in Eq. (2.2), is to be determined. In this section, we shall employ 
the limiting procedures detailed in Eq. (2.2) to describe the angular and 
spatial correlations of a fluid near a wall where the particle-particle inter- 
actions in the fluid bulk are nonspherically symmetric. Specifically, the system 
of interest exhibiting such an isotropy is modeled by mixtures of dipolar 
hard spheres. Fortunately, the structural and thermodynamic properties of 
mixtures of dipolar hard spheres have been calculated within the mean 
spherical approximationJ 1~ Despite certain quantitative inadequacies of  
the mean spherical approximation, the qualitative behavior is correct. (12~ 
Coupled to the reduction of  the problem to analytic form, and given the 
well-established procedures of Stell and co-workers (13) to correct basic 
inadequacies of the model, it would be desirable to use the structural be- 
havior of dipolar hard spheres (within the mean spherical approximation) 
as at least a reference system. The structural properties predicted by such 
a reference system should not only be qualitatively correct, but also could be 
successively corrected (for example, by the generalized mean spherical 
approximation initially) to a level where comparisons to experimental or 
computer results would be meaningful. 

For a binary mixture of dipolar hard spheres the density profile of pure 
species (a = 1) becomes a function not only of the separation from the wall 
(/3 = 2), r -  �89 but also of the angular configurations of the dipole 
directions ~2~ = (0~, ~), i = 1, 2. In particular, Eq. (2.2) becomes 

pz(rz2, E~, ~2) = R2~lim~o~o2~o ~ lim (p~/4rr)[h12(r~2, E~, D2) + 1]} (2.3) 

In Eq. (2.3), the directions E~, ~2, and f~2 = r~2/Irlz] are defined with 
respect to a fixed Cartesian coordinate system S. 

The total correlation functions h~B(r~2, E~, ~2) (a, J3 = 1, 2) are given 
by the solution of  the Ornstein-Zernike equation: 

2 

y = l  , f ~ r j  j 

• c~(r13, ~ ,  ~3)h~B(r32, ~3, ~ )  (2.4) 
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where c~e(r~2, ~2~, ~2~) is the direct correlation function for the ~-/3 species 
interaction. Equation (2.4) is closed by the mean spherical approximation, 
which gives the following boundary conditions: 

h~(r~,  g~, ~2~) = - 1  if r~  < R~  (2.5) 

and 

c~z(ra2, ~2~, ~2z) = -v=a(rl~, ~2~, s if r~z > R,e (2.6) 

where r~z = Jr,21. In Eqs. (2.5)-(2.6), k is the Boltzmann constant, T is the 
absolute temperature, and R~z and v,z are defined by 

R ~  = (R~ + R~)/2 (2.7) 

and v.e(r~, ~2~, g~z) is the dipolar part of the dipolar hard-sphere potential 
u~(r~2, g~, ~2~) defined in 

u~(rlz, ~2~, g~z) = uaS(r ~ 

where 

and 

u~ (r~z) = if r~z > R~a 

v,,(r12, ~21, ~22) = -(m~m,/r~2)s(~21).(3f~2~2 - U).s(S22) (2.8) 

Here m, is the dipole moment strength of a particle of species ~, U is the 
unit dyadic in three-dimensional space, and s(~2j) is the unit vector along 
the dipolar vector mj: 

s(~23 = (sin 0j cos Cs, sin 0j sin Cs, cos O h 

The substitution of the following invariant expansions for h~B(r~, ~21, g~2) 
and c,~(r12, ~21, g~2) 

h,~(r~2, ~21, ~22) = h~B(r~2 ) + hg~(r12) A(~2~, ~22, ~z) 

+ hf~(r~2)D($21, ~22, ~2) (2.9) 

c~B(r12, g~l, g~2) = cSt3(r12) + ca, B(r12) A(~I ,  $22, r12) 

+ cg~(r~)O(~, ~ ,  r~) (2.10) 

into Eq. (2.4) and the use of the constraints of Eqs. (2.5), (2.6), and (2.8) 
initiates the solution of the mean spherical approximation for dipolar hard- 
sphere mixtures. ~4~ It should be noted that the elements of the angular 
basis set are unity, A, and D, where A and D are defined by 

/,(S~, S~, ~1~) = s (~ ) - s (~2 )  (2A l) 
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and 

D(~I ,  ~22, ~2) = s ( ~ ) . ( 3 ~ 2 ~ 2  - U).s(~2) (2.12) 

The details of solution have been given elsewhereJ 9~ For completeness, 
a brief summary of the solution will be given below. It can be shown that 
the angular-dependent coupling in the Ornstein-Zernike equation [Eq. (2.4)] 
can be removed completely. The resulting three independent integral equa- 
tions can be reduced to the Ornstein-Zernike equation for mixtures of hard 
spheres with mean spherical closure rules (equivalently, the Percus-Yevick 
closure rule) plus two other Ornstein-Zernike-like equations with unusual 
closure rules. Specifically, the spherical radial coefficient hSa(r) is the usual 
Ornstein-Zernike equation with Percus-Yevick closure: 

hSa(r~2) = cSB(r~2) + ~ p~ f drah~(r~)CB(ra~) (2.13) 
7=1 

where 

and 

hS.B(r~2) = - 1  if r12 < R~z 

cge(r~2) = 0 if r12 > R.B (2.14) 

The remaining equations are given in terms of the quantities c~e(r), h{B(r), 
and a self-consistently determined parameter K~e. These integral equations 
take the form of 

9. f 4- 4- h~(r~2) = c~B(rlz) + ~ Pr4- dre h.~(r13)cya(r32) (2.15) 
3 7=1 

where Pr4- are  defined by 

~2p~ (+  case) 
PY~ = ~ - p y  ( -  case) 

The closure rules appropriate to Eq. (2.15) are 

h~B(r ) = - K ~  e if r < R~ B 

and 

where 

caB(r) = 0 if r > R. B (2.16) 

K.~ = dt t - l h~B( t ) 
aB 

Equations (2.15)-(2.16) can be solved using Baxter's factorization tech- 
nique ~15~ as originally formulated for Eqs. (2.13)-(2.14). Such an approach 
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gives the h(~er ) in terms of q~B(r), a known quadratic expression in r, in the 
following form: 

= -q~e  (r) + 2rr O~ ~ rhea(r) '~ dt qg ( t ) ( r  - t)h~a(Ir - t l) (2.17) 
] ' = 1  " 8a~, 

where 

q~(r) = lzK~aa"a(r~ 2 R ~ )  + K.eb~a(r - R~), S ~ a =  �89 - Re) (2.18) 

and the a,~ and b,5 are known functions of the densities or, diameters R~, 
and parameters K~r. Finally, the anisotropic radial coefficients h~B(r ) and 
h~B(r ) can be determined from the hga(r) by the following transformations; 
h}e(r ) is a linear combination of hgB(r): 

h~B(r) = 2[h+e(r) - hg~(r)] (2.19) 

while hDB(r) is determined through an intermediate function hDe(r) in the 
following way: 

h~(r) = 2h~+~(r) + hge(r ) (2.20) 

and 

h~B(r ) = /~.~ ) -- 3r -a dt t2f~B(t) (2.21) 

In summary, Eqs. (2.13), (2.15), and (2.19)-(2.21) can be used to obtain 
the radial coefficients appearing in the expression for h~(rl=, ~2,, ~22). Such 
a procedure is largely numerical and will not be presented in detail. However, 
it should be noted that the numerical determination of the parameters K~ 
which effectively measure the long-range correlations in the mixture is done 
prior to the numerical solution of Eq. (2.17), i.e., the q ~ ( r )  are completely 
determined. The limiting behavior of these h~B(r, ~ , ,  ~22) as described in 
Eq. (2.3) depends ultimately on the corresponding limiting behavior of the 
fundamental parameters K~.  Accordingly, attention will be given to the 
large-R2, small-p2 limiting behavior of the K~ B. 

In the limit of vanishingly small p2 values the self-consistent equations 
which describe the K~ B as a function of the molecular parameters ml, m2, 
R1, and R2 and the macroscopic variables k T  and p~ take on a much simpli- 
fied form [cf. Eqs. (3.5) of Ref. 9b, describing the ordinary mixture case]. 
An equation for K= is found which is the result for the pure component 
case. In particular, Kn  can be found through iteration of Eq. (2.22)<~4~: 

~r(m12pl / kT)  = Q(2Knp~RI  a) - Q ( - K ~ p ~ R ~  a) (2.22) 
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where Q(x) is the inverse compressibility of a pure fluid of hard spheres in 
the Percus-Yevick approximation, i.e., Q(x) is given by 

Q(x) = (1 + 2x)2/(1 - x) 4 (2.23) 

The determination of K12 is given in terms of Kit and mz/R~2 through 

mlm2/kTR~9. = K~2[2Q(2K~pIRI 3) + Q(-KzIp~R13)] (2.24) 

The limiting behavior of K22 is not required here since Kn and K12 are 
independent of K22. It should be noted the value of K~ is independent of 
the size of R2. In other words, the radial coefficients hS~(r), h~a(r), and h~(r) 
are independent of the presence of the infinitely dilute second component. 
Consequently the large-R2 behavior of K~2 need only be described. 

If the limit as R2 goes to infinity were directly applied to Eq. (2.24), 
K~2 would approach zero as Rs 3. In that limit, the anisotropic dependence 
of the correlation function h~2(r, ~ ,  $22) disappears completely. Here the 
density profile of dipolar hard spheres away from the hard wall is purely 
determined by correlations induced by the hard-core repulsions of the 
dipolar hard sphere with the wall. Such hard-sphere, hard-wall density 
profiles have previously been generated using other methods. (a.5,~6) 

However, a more interesting limiting case is achieved if the dipole 
moment rn2 is allowed to grow in magnitude at a rate proportional to the 
excluded volume R~a2. In this way, the ratio rn2/R~2 is finite, and as a con- 
sequence of Eq. (2.24), K~2 is nonzer 9. This nonzero K:2 ensures that through 
Eqs. (2.16)-(2.21) the anisotropic radial coefficients h~2(r) and hD2(r) are 
no longer trivially zero. Before discussing the density profiles [described 
through Eqs. (2.3) and (2.9)], it is appropriate to point out the physical 
interpretation of the constraint that rn2/Ra2 be constant as p2 goes to zero 
and R2 to infinity. 

The physical significance of finite values of the quantity m2/R~2 is given 
in the limiting behavior of the dipole-dipole potential between any particle 
of species one interacting with the isolated particles of species two. If  the 
distance between surfaces along the line of the intermolecular axis is defined 
as x, where r~2 = R~2 + x, by definition, then the limiting behavior of 
v12(rlz, ~ ,  ~2) is given by Eq. (2.8) as 

lim v~2(r~2, ~ ,  ~2) = lim { -  [m~m2/(R~2 + x)3]D(~,  ~2, r~2)} 
R 2 ~ o ~  R2--* cc 

= --mls(~l).  [(mz/R~)(3~[~ - U)-s(~)]  (2.25) 

where ~ is the limiting direction of f~. for large R2. Equation (2.25) can be 
rewritten in a form indicative of the electrostatic interaction of a dipole mt 
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[magnitude m~ and direction s(~2a)] with an external electric field Eo. In 
other words, the limiting behavior of v~2 in Eq. (2.25) is 

lim v12(r12, ~21, ~2) = -mls(~l) .E0 
R 2  ---~ oo 

where the magnitude of Eo is 

and direction 

(2.26) 

Eo = f / f  (2.28) 

The vector f (of magnitude f )  is defined by 

f = (3bb - U).s(~2) (2.29) 

From Eq. (2.29) the magnitude of f can be shown to be 

f = {3[~-S(~'~2)] 2 + 1} 1/2 (2.30) 

Equations (2.28)-(2.30) show that the resulting electrostatic field is not 
usually aligned with the direction of rn~, the magnitude of which determines 
the strength of the field through Eq. (2.27). In summary, the electrostatic 
field produced by the constraint that rn2/R~2 be finite is constant in magnitude 
and direction throughout the fluid. 

From Eqs. (2.24)-(2.26) it follows that the quantity mlm2/(kTRa~) is 
proportional to the energy of interaction between a dipole in the fluid and 
the applied electrostatic field E0. Consequently the parameter K12 measures 
not only the short-range correlations in the fluid due to the presence of the 
wall, but also the long-range correlations in the fluid due to the aligning of 
molecules with the field. Incorporating the electrostatic field, Eq. (2.24) may 
be written as 

E*/T* (2.31) 
K12 = 2Q(Kl lplRla)  + Q ( _ K l a p 1 R  a) 

where E* and T* are the reduced electrostatic field strength and temperature, 
respectively. These reduced variables are defined by 

E* = m2R~a/m~Ra2f = EoR~a/m~f (2.32a) 

T* = kTR13/m~ 2 (2.32b) 

The factor of f appears in the denominator of Eq. (2.32a) because the 
magnitude of the field Eo is dependent on the field's direction as well [see 
Eqs. (2.27)-(2.30)]. This basic anomaly is associated with the direction of 
the field being defined in terms of the dipole-dipole interaction tensor 
3~2~2 - U. However, the study of the density profile as a function of the 

Eo = m2f/Ra2 (2.27) 
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direction of  the applied field for  a given field strength can be made  if the 
field strength is renormalized through Eqs. (2.30) and (2.32a). 

Since the p r imary  objective of  this paper  is to follow the effect o f  the 
field upon  the density profiles, the numerical  procedures used to obtain the 
radial  coefficients in Eq. (2.9) should be mentioned.  I t  is convenient  to 
define ha(r) to be hS2(r), h~2(r), h[2(r) for  j = 0, - ,  + ,  respectively. In  the 
limit o f  p2 going to zero, Eq. (2.17) can be writ ten for  r > R2~ as 

fo" r h J ( r )  = 2 ~ r m  j d t q 1 ~ ( t ) ( r  - t ) h J ( I r  - t I) (2.33) 

The general closure relations for  the various hi(r)  are compounded  as 

hi(r)  = - K  j for  r < R21 (2.34) 

where 

K ~ = 1, K + = K -  = K12, Pl ~ = P l ,  pl + = 2p1, 

and P~- = - p l  

The substi tution r = R21 + x into Eq. (2.33) followed by the taking of  
the second limit R2 approach ing  infinity yields 

f? hJ(R~2 + x)  = 2rrpl s dtq1~(t)hJ(lR~2 + x - tl) (2.35) 

Discret izat ion of  this integral equat ion in terms o f  the increment  e = R z / N  
(E was taken to be R~/20 in the following calculations) and use of  the trape- 
zoidal rule to evaluate the convolut ion and of  the identity q~(R~)  = 0 gives (a) 

[1 - ,~,mJqi~(O)]hJ(R~2 + me) 

N - 1  

= 2~rp~ j ,  ~_, q~a(ke)hJ(R~2 + (m - k)e) (2.36) 
/ c=1  

In  Eq. (2.36), qi~ assumes the quadrat ic  fo rm 

q~l(r) J 1 J 2 b l l (r  = K1z[-~all(r - R12) + - R1)] 

where 

with 

a~z = (1 + 2se0/(1 - ~j)2, bl l  = - 3 R I ~ / ( 1  - ~j)2 

and K~I = l, K l l ,  K ~  for  j = 0, + ,  - ,  respectively. The h j as generated 
f rom Eq. (2.36) require the following initialization of  the first N + 1 values 
of  hi: 

hJ(k) = - K  j for  k = 1, 2 ..... N (2.37) 

and 

hJ(N + 1) = �89 + 2~0/(1 - ~j)21 _ 2} (2.38) 
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where 

h i ( k )  = h J ( ( k  - 1)E) 

Finally, h~2(r = RI2 + mE) and h~2(r = R12 + mE) are determined 
directly from Eqs. (2.19) and (2.20), respectively. The inversion of h~2(r) to 
obtain h~2(r) is simplified in the limit of large R2 to the following form: 

h~2(r) = [2hi~2(r) + h~-2(r)] + 3K~z (2.39) 

Then the radial coefficients hS2(r), h~2(r), and h~2(r) are stored for further 
evaluation at the various angular directions considered. 

3. RESULTS 

The density near the wall is given by Eq. (2.3) with (2.9), In Figs. 1-3 
we have plotted pl(x, ~2~, Eo)/(pl/4rr), the density as a function of distance 
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Fig. 1. A d s o r p t i o n  profiles as m e a s u r e d  by g12(x) = 1 + h12(R12 + x) for  var ious  
dipole  or ien ta t ions  when  the  bu lk  fluid pa rame te r s  are  T* = 2 and  X = 0.3. The  var ious  
dipole or ien ta t iona l  curves  given by A - H  represent  01 = 0, rr/4, zr/2, 3~r/4, 7r, 5~r/4, 
3n/2, 7n/4, respectively. The field strength is given by E* = 8/3. The field angle 02 is zero. 



g~ 

6 

5 

L B. 

b 

2 

1 

0 

Adsorption of Dipolar Hard Spheres onto a Smooth, Hard Wall 341 

0 1 2 
x /R  1 

Fig. 2. Same as for Fig. 1 except that 02 = zr/4. 

from the wall, for various field angles (0, 45, and 90 ~ to the wall) and dipole 
angles (as defined in Fig. 4). From the figures it can be seen that the distribu- 
tion can change as the distance from the wall increases, and the behavior 
near the wall requires separate consideration from behavior in the bulk of 
the fluid. 

If  we consider the Z axis to be perpendicular to the plane, the angles of  
interest are given in Fig. 4. The field angle and dipole angle are coplanar, 
with the azimuthal angle set equal to zero. 

We refer to the region adjacent to the wall to the first minimum of  p 
as the monolayer, and the region to the second minimum of p as the first 
outer shell. The contact value of the density function can be regarded as a 
quantitative measure of the physisorption in the monolayer. 

3.1.  Bu lk  B e h a v i o r  

In considering these figures it should be noted that in the bulk region 
the behavior of  the density function is determined by h~2, (14~ which is non- 
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Fig. 3. Same as for Fig. 1 except that 02 = ~r/2. 

2 

Fig. 4. The angle that the field E makes 
with the vector perpendicular with the 
wall is 02. The angle that the dipole 
moment ml makes with the vector per- 
pendicular to the wall is given by 01. 
Note that 01 and 02 are taken to be 
coplanar, with the azimuthal angle equal 
to zero. 
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zero. Specifically in Eq. (2.39), hi~2 and hi-2 approach zero as r becomes large, 
so that in the bulk region 

h~2(r) = 3Kz2 (3.1) 

If we combine this result with the fact that hS2 goes to zero and with 
Eq. (2.31), we obtain the following asymptotic behavior for the density 
profile: 

pi(~1 Eo) = P l t  , ~ 1 

--- P l f l  
4,~ ( 

+ 2Q(2KI~p~Rla) + Q(-KI~p~RIZ)J 

3Eo } ~  1 

+ kT[2Q(2KllplK1 a) T -Q(-KIlpIRla)j 
(3.2) 

This result differs from the first-order result (from expanding exp(fiE0-ml) 
and averaging in the zero-field ensemble) by the compressibility factors in 
the denominator of Eq. (3.2). In fact, from Eq. (3.2) it is easy to see that 
the orientational ordering in the bulk will mimic the energetics of the dipole- 
electric field interaction, since the Q factors do not depend upon orientation. 

For example, in Fig. I, one can see that the ordering of the probabilities 
of the dipole orientation can be explained on the basis of the value of E0.ml. 
The most preferred orientation is parallel to the field and the least preferred 
is antiparallel to the field, with the other orientations distributed according 
to Eq. (3.2). Similar behavior is found in Figs. 2 and 3 when the field angle 
is changed. The relatively large field splitting in the bulk is due to the fact 
that the dipolar-field interaction is typically two to three times greater 
than the dipole-dipole interaction at contact. The field-dipole interaction 
can be measured by E*/T*, and the dipole-dipole interaction strength can 
be measured by 1/T*. In our case we took E* = 8/3 and T* = 2, giving a 
relative strength of  8/3. 

3.2. Wal l  Behavior  

Generally, for the cases we have considered the relative orientational 
order in the first outer shell is the same as for the bulk (see Figs. 1-3). In 
other words, the relative populations in the first outer shell and beyond are 
largely determined by the electric field-dipole interaction. An interesting 
effect occurs in the monolayer, however. In this region it is possible to  have 
competitive interaction of the dipoles in the monolayer with the first outer 
shell, and the dipoles in the monolayer with the field. If  the field angle is 
zero (Fig. 1), the two interactions are complementary, so that the bulk 
ordering persists to the monolayer. In this case the ordering of the dipoles 
in the naonolayer due to the electric field is reinforced by the most populated 
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orientational states in the first outer shell. On the other hand, for other field 
angles (Figs. 2-3), orientations energetically favored by the field may not 
be favored by the dipole-dipole interactions. All of  the splittings in the 
figures can be understood in terms of this competitive process. Consider 
Fig. 2, where the field angle is ~-/4. The favored orientation in the bulk (and 
the first outer shell) is parallel to the field (rr/4). If the field completely deter- 
mined the structure in the monolayer, then these particles would be similarly 
aligned. However, the monolayer dipole-first outer shell dipole interaction 
for two particles with alignment ~r/4 is not the most energetically favored. 
In fact, the most favored monolayer-first outer shell dipolar interaction is 
when the monolayer particle is set at 7~/4 rad. Consequently, the monolayer 
density for 7rr/4 increases out of all proportion with respect to the bulk 
ordering. It is still very much a competitive process, for one can see that the 
most favored monolayer configuration is for n / 4  radians, which combines 
strongly favored f ield-dipole and dipole-dipole interactions. Similar 
comments apply to Fig. 3 with respect to the comparison of the relative 
population of the monolayer orientation to that of the bulk. 

We have presented the results for a single bulk density and bulk tem- 
perature (~rp lR1  a = .3, kTR~a/m~ 2 = 2). There are a few other trends that 
we shall remark upon briefly. As the field strength decreases, the bulk 
splitting becomes smaller and any degeneracies persist. There are also fewer 
particles in the monolayer. As the temperature decreases, there is greater 
adsorption in the monolayer,  greater splitting in the bulk, and any split- 
tings persist even to the extent of  occurring outside the first outer shell. As 
the density decreases, the splittings become less prevalent because there 
are decreasing numbers of particles in the first outer shell to interact with 
the monolayer particles. In addition, the splitting in the bulk becomes 
larger as the field interactions in the bulk are less moderated by the dipole- 
dipole interaction. 

4. C O N C L U S I O N S  

We have shown that the method of Perram and Smith of examining a 
fluid near a wall may be extended in the case of dipolar hard spheres to 
allow consideration of a dipolar fluid in an electric field near a wall. The 
case of the electric field at a skewed angle with respect to a homogeneous 
wall will not ordinarily occur in nature, although there may be some hetero- 
geneous surfaces for which the concept of a skewed field may be of value 
for certain axial configurations. In any event, the arbitrary field angle can 
be considered solely within the context of the model as an example of com- 
petitive adsorption due to the presence of an external potential which depends 
upon the orientation of the dipolar hard spheres in the bulk. We are not 
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unaware o f  the primitive nature o f  this model. Nevertheless, the model 
exhibits interesting competitive effects in adsorption. Fur ther  investigation 
is needed both  o f  these angular effects and of  the fluid-wall problem in 
general before quantitative comparison will be possible, but the fact that  
such a simple model exhibits qualitative features at all is encouraging, and 
suggests that  extensions, for example, to competitive adsorpt ion studies, 
may  be very worthwhile. 
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